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Persistence of a pinch in a pipe
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Abstract – The response of low-dimensional solid objects combines geometry and physics in
unusual ways, exemplified in structures of great utility such as a thin-walled tube that is ubiquitous
in nature and technology. Here we provide a consequence of this confluence of geometry and physics
in tubular structures: our analysis shows that the persistence of a localized pinch in an elastic pipe
whose effect decays as an oscillatory exponential with a persistence length that diverges as the
thickness of the tube vanishes, which we confirm using simulations and simple experiments. The
result is more a consequence of geometry than material properties, and is thus equally applicable
to carbon nanotubes as it is to oil pipelines.
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Introduction and scaling. – Thin sheets and
membranes are ubiquitous in nature and technology over
a range of length scales. Their mechanical behaviour is
strongly determined by the geometrical separation of
scales that allows out-of-plane bending deformations to be
much softer than in-plane shearing or stretching deforma-
tions. This leads to all manner of interesting phenomena
such as the wrinkling, draping and crumpling of thin
sheets [1–5]. In all these situations, the primary focus
has been on understanding how small scales arise from
larger ones as energy and stress are quite literally focused
strongly in response to imposed far field boundary condi-
tions, and some progress has been made in understanding
fine scales and singularities arising in these systems. A
different set of questions that one can ask of these same
thin structures is the effective geometric stiffening on
scales much larger than the thickness induced purely by
geometry. For example, it is well known [6] that a complete
sphere is perfectly rigid with respect to isometric deforma-
tions, i.e. it cannot be deformed without stretching which
would lead to changes in the metric. Similarly, a cylindri-
cal sheet is much stiffer than its flat counterpart with the
same dimensions and explains the relatively large effective
stiffness of a carpenter’s rule. Indeed the separation of
geometric scales inherent in these structures gives them
their large specific stiffness (stiffness per unit weight) and
leads to strongly geometrical modes of deformation that
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involve global buckling on the one hand and localized
modes on the other when subject to pressure, compres-
sion, twisting and bending. Here we focus on a peculiar
global mode of deformation in cylindrical structures which
are ubiquitous in nature and technology over a range of
length scales, from carbon nanotubes and cytoskeletal
microtubules to oil pipelines and grain silos. Our starting
point is the simple observation that when a paper or
plastic drinking straw of length L, radius R and thickness
t (L�R� t) is pinched at an end it becomes elliptical
locally, as shown in fig. 1 (try it yourself); however the
deformation of the straw persists over a length that is
much larger than the radius of the straw. This raises a
natural question: what is the persistence length of a pinch?
Indeed even when a naturally flat relatively narrow elas-

tic plate of width D and length L(�D) (equivalently,
we could consider a periodically pinched sheet such as a
drape) is pinched at an end to make it slightly narrower
so that the amplitude of the pinch is a, casual observa-
tions show that the persistence of the pinch is much larger
than the width of the strip. To understand this persistence,
we note that the dominant component of the curvature
is transverse to the length of the sheet and scales as as
a/D2. Then the bending energy in the sheet [7] scales as
Ub ∼Et3(a/D2)2Dlp, where E is Young’s modulus of the
material of the plate, and lp is the unknown persistence
length of a pinch. Over the scale of this persistence length,
the sheet is weakly curved in two orthogonal directions so
that it must be stretched (since the Gauss curvature of a
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Fig. 1: A photograph of a tube pinched at an end shows that the effects of the pinch persist on scales that are much larger than
the diameter of the tube. The penny in the background has a diameter of about 1 cm.

doubly curved surface is non-zero, it follows from Gauss’s
theorema egregium that it must have been stretched). The
typical stretching strain associated with this deformation
scales as a2/l2p, costing a stretching strain energy that
scales as Us ∼Et(a2/l2)2lpD. Minimizing the sum of the
bending and stretching energy Ub+Us, we see that the
persistence length of a pinch scales as lp ∼D(a/t)1/2 [1,4],
showing a clear dependence on the amplitude of the pinch
as well as the thickness of the sheet, and diverging as the
sheet thickness vanishes. When the sheet is not flat, as in
the case of a complete cylindrically curved sheet of radius
R, for example, a naive estimate based on the estimate
just derived suggests that when such a pipe is pinched,
a∼D∼R, so that lp ∼R3/2/t1/2, a result first postulated
in [8]. This somewhat surprising result suggests that the
persistence of a pinch in a shell is independent of its ampli-
tude and diverges as the thickness becomes vanishingly
small. Using a combination of analysis, numerical simu-
lations and experiment, we show that there is a unified
approach to these persistent deformations in thin curved
shells with possible implications for a range of systems in
the microscopic and mesoscopic world.

Formulation, analysis, simulation and experi-
ment. – To go beyond the simple scaling argument above,
we start with the equations of equilibrium for a shallow
cylindrical shell parametrized by its azimuthal coordinate
y and the axial coordinate x, for which the von Karman-
Donnell equations [9] read

B∆2w+
1

R
φ,xx = w,xxφ,yy +w,yyφ,xx− 2w,xyφ,xy,

∆2φ− Et
R
w,xx = Et(w,xy

2−w,xxw,yy). (1)

Here A,b =
∂A
∂b
, w(x, y) is the deflection of a point on the

cylinder relative to its naturally curved state, φ(x, y) is the
Airy stress function whose derivatives are the components
of the in-plane stress tensor, and B =Et3/12(1−σ2)
is the bending stiffness of the sheet of material with
Young’s modulus E and Poisson’s ratio σ. The first
equation quantifies the balance of forces perpendicular
to the cylinder surface, while the second is a geometric
compatibility relation involving the in-plane strains. We
note that the Karman-Donnell system is one of the
simplest of a class of approximate equations of increasing
sophistication for the deformations of elastic shells [10];

they assume that the curvature of the shell is small
(in dimensionless terms, t/R� 1, R/L� 1) and that
shear deformations may be neglected. However they are
sufficient to qualitatively and quantitatively explain the
phenomena at hand, as we shall see.
To mimic the effect of pinching a cylinder at one end,

we assume a simple form for the prescribed displacement
at the free end consistent with the first elliptical mode
of deformation in the azimuthal direction. While this is
undoubtedly a simplification of the localized force profile
associated with a pinch, our numerical simulations of
a variety of boundary conditions show that the details
of how the cylinder is pinched do not affect the generic
phenomena of pinch persistence that is the focus here;
indeed in fig. 2 we show that an elliptical approxima-
tion to the shape is a very good one even if the shell is
indented at its antipodal points. We assume that the axial
variations induced are on length scales large compared
to the radius, and will later check this assumption
for consistency. This suggests a solution of the form
w(x, y) =W (x) cos(πy/2R); φ(x, y) =Φ(x) cos(πy/2R).
Substituting into eq. (1), and keeping only the leading
order terms, we find that

( π
2R

)4
BW +

1

R
Φ′′ ≈ 0,

( π
2R

)4
Φ− Et

R
W ′′ ≈ 0, (2)

where (.)′ =d(.)/dx, and we have dropped the nonlinear
terms in (1). Eliminating the function Φ(x) from the
above equations, we find that the amplitude of the
deformation W (x) satisfies the linear equation

W
′′′′
+

t2

12(1−σ2)
π8

28R6
W ≈ 0. (3)

Since fourth-order equations often arise in the theory
of elastic plates and shells, as a point of comparison,
it is useful to recall that the balance of forces for an
elastic beam supported on an elastic foundation of stiffness
K yields an equation of the form [7] BW ′′′′+KW = 0.
Indeed, for the axisymmetric deformations of a cylindrical
shell for which K =Et/R2 we also get an equation of
this form, viz. [t2/(12(1−σ2))]W ′′′′+W/R2 = 0, similar
to that for a beam on an elastic foundation. While
these equations might seem to be similar to (3) they
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Fig. 2: Numerical simulations of pinching a cylindrical pipe (t/R= 0.01). (a) The ellipticity of the pipe is oscillatory. The black
regions have the same ellipticity as the pinch at one end with d1 > d2, and white regions have an ellipticity that is rotated by 90

◦

so that d1 < d2. (b) The originally circular pipe deforms into an elliptical mode in response to an indentation at its antipodal
points; only quarter of the pipe is shown in light of the symmetry of deformation. (c) A log-linear plot of the scaled radial
displacement of the pipe along a line parallel to the cylinder axis w/R as function of the scaled axial distance x/R from the
pinch point shows that it decays exponentially. The solid line is the theoretical prediction |w| ∼W ∼ exp(−kx), with k given
in (4). The periodic cuspidal dips as indicated by the circle are associated with a change in sign of w when the ellipticity rotates
by π/2, so that log |w| diverges, but this is of no physical significance.

are qualitatively different; in the limit of a thin shell,
i.e. t/R→ 0, the preceding equation is of a singularly
perturbed type exhibiting boundary-layer–like regions of
size (tR)1/2 over which the solution changes rapidly that
have been the focus of many recent investigations [3].
This is quite unlike (3) which is relatively benign with
no singular behavior as t/R→ 0. Indeed, we can see this
immediately by noting that the general solution to (3) is

W (x) = W0 exp(−kx) cos(kx+α),

k =

[
t2π8

12(1−σ2)28R6
]1/4
, (4)

where the amplitude W0 and the phase α are determined
by the boundary conditions at the end where the pipe
is pinched. Thus an applied pinch of amplitude W0
decays as an oscillatory exponential with a characteristic
persistence length �p = 2π/k∼ 4.4R3/2/t1/2 for typical
materials with σ ∈ [0.33, 0, 5]. Furthermore the ellipticity
induced by the pinch rotates slowly as one progresses
along the pipe, analogous to the polarization of a wave.
Since �p/R∼ (R/t)1/2� 1, our assumption that the shape
and stress have variations with gradients that are much
smaller in the axial direction than in the azimuthal
direction is justified. Furthermore, the nonlinear terms
are of order W0/R (� 1) smaller than the linearized

terms and are thus subdominant as assumed. We also
observe that the persistence length is determined primarily
by the geometry of the tube; the dependence on the
material properties via Poisson’s ratio is very weak since
σ ∈ [−1, 1/2] for isotropic materials. And finally we see
that the persistence length of the pinch diverges as the
thickness of the tube vanishes or as the radius of the cy-
linder diverges, i.e. as the tube is flattened. This geometric
amplification is in sharp contrast with the focusing that
leads to the generation of fine scales and singularities
in the inhomogeneous deformation of thin films in such
instances as wrinkling and crumpling [1–3,5].
The above-linearized analysis is valid only for small

deformations in light of the approximate nature of the von-
Karman-Donnell equations and our asymptotic analysis.
To check the validity of our analysis, we carried out
numerical simulations using the finite element method
implemented in a commercial package ABAQUS that
was used to minimize the elastic energy of a linear
isotropic solid in a slender shell-like geometry. For very
thin shells, this elastic energy density that is minimized is
approximately

U =
Et

2(1−σ2)
[
(ε1+ ε2)

2− 2(1−σ)(ε1ε2− γ2)
]

+
Et3

24(1−σ2)
[
(κ1+κ2)

2− 2(1−σ)(κ1κ2− τ2)
]
. (5)
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Fig. 3: Numerical simulations (circles) show that the persistence length of a pinch �p =CR
3/2/t1/2, with C ≈ 4.5, consistent

with experiments (triangle), and the solution of eq. (3) (solid line) to within 5%. The bars show the standard deviation of
the experimental observations. Inset: we show the exponential decrease in the amplitude of the oscillatory response W (x) as a
function of the scaled distance xR−3/2t1/2 from the applied pinch, obtained from numerical simulations for finite deformations,
in agreement with the solution of eq. (3). The symbols refers to the different values of t/R used in the simulations.

Here ε1, ε2, γ are the in-plane extensional and shear strains
and κ1, κ2, τ are the curvatures and twist relative to
the undeformed state of the tube. The first term in the
expression accounts for in-plane deformations and the
second term accounts for out-of-plane deformations. Four-
node, quadrilateral shell elements with reduced integra-
tion and a large-deformation formulation to account for
the finite curvatures of the shell were used in calcula-
tions. A sensitivity study was conducted to ensure the
independence of the results on the computational mesh;
we refined the mesh until there was essentially no depen-
dence of the results on the mesh size. We considered very
thin isotropic and homogeneous elastic tubes which were
pinched symmetrically at one end with a prescribed inden-
tation deformation w(0, 0) =−w(0, πR) =W0; the details
of the specific displacement fields that satisfy this symme-
try condition turn out to be unimportant in determin-
ing the value of the persistence length of the pinch. The
tubes were assumed to be made of linearly elastic mate-
rial (with Young’s modulus E = 100 MPa and Poisson’s
ratio σ= 0.3) of varying thickness t in our simulations,
with t�R�L. In fig. 2a we see that the tube deforms at
the location of the pinch into an elliptical shape, justify-
ing our simple analytical ansatz. Figure 2b shows that the
tube responds with a varying ellipticity consistent with
our simple analytical predictions, while fig. 2c shows that

the amplitude of the deformation decays exponentially as
expected from our simple analysis.

In fig. 3, we show that for various t but a fixed applied
pinch amplitude W0 and tube radius R, the persistence
length measured numerically by following the period of
oscillation of the ellipticity also follows our analytical
predictions. In the inset we show that the amplitude of the
deformation of the tube decays exponentially away from
the location of the pinch. We also carried out experiments
with long straws and tubes of various thickness (ranging
from 0.1mm to 0.3mm) and radii (ranging from 3mm
to 12.5mm). The images of the pinched straws were
taken with a digital camera and were analyzed using the
Canny edge-detection-algorithm in MATLAB to extract
the information on the boundary of the deformed profile.
The thickness and radius of the tubes were measured using
slide calipers. In fig. 3, we show that the experimentally
measured values of the persistence length match the
numerical simulations and are consistent with the scaling
derived analytically over more than an order of magnitude
in length. However, the oscillations are difficult if not
impossible to see due to their exponential decay and their
initially small amplitude at the pinch.

Discussion. – We close with a few implications of
our study. On the microscopic scale, in molecular carbon
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nanotubes [11,12] or cytoskeletal microtubules [8,13] our
result shows how mechanical strains may be transmit-
ted over long distances along tubes. Whether this is of
any significance remains to be seen, but our calculations
and experiments suggests that this persistence should be
measurable; for a microtubule (R∼ 12.5 nm, t∼ 2 nm),
the persistence length �p ∼ 140 nm, while for a carbon
nanotube (R∼ 2 nm, t∼ 0.2 nm), �p ∼ 30 nm. Since the
energy required for the deformation of a tube per wave-
length scales as Et3(W0/R

2)2�pR∼W 20Et5/2/R3/2, this
effect will persist even in the presence of thermal fluctua-
tions as long as the elastic energy is larger than kBT , i.e. if
the amplitude of the pinch is larger than some threshold.
On mesoscales, a dramatic example of the failure of

tubes is afforded by the pressure driven flip-flop propa-
gation of buckles in submarine pipelines [14], wherein a
metal pipe flattens alternately in one direction and then
in an orthogonal direction, with a sharp transition region
separating them. Experiments [15] show that these regions
of orthogonal flattening have a characteristic length scale.
Our result complements numerical simulations of the
process [15] by providing a simple physical explanation
for the flip-flop which we interpret as a consequence of a
globally deformed tubular shell induced for example by
a local perturbation. Then, an oscillatory elliptic mode
follows naturally, and sets the stage for dynamic and
plastic buckling that leads to a flip-flop mode of propa-
gation. Substituting in values of the pipe diameter and
thickness (R∼ 5 cm, t∼ 0.5 cm), we estimate the flip-flop
wavelength to be of the order of �p ∼ 4.4R3/2/t1/2 ∼ 60 cm
which compare well with the experimentally measured
values in the range of ∼ 80 cm [15]. The quantitative
discrepancy seen is possibly due to two effects that
oppose each other: a) the persistence length is reduced
in a dynamic problem due to the effects of inertia, and
b) the effect of a uniform pressure that acts on the tube
increases the effective persistence length.
The geometric stiffening that we have studied is also

used by nature in the long semi-cylindrically bent leaves
that are stable against gravitationally induced buckling,

and in everyday objects such as a novel paper holder that
holds a sheet in a curved template for much the same
purpose. Our calculations need be modified to account for
natural geometries other than cylinders, e.g. conical and
weakly elliptical shells, as well as the new scales introduced
by gravity and suggest further venues of study motivated
by these observations.
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