
doi: 10.1098/rsif.2011.0352
 published online 10 August 2011J. R. Soc. Interface

 
Dominic Vella, Amin Ajdari, Ashkan Vaziri and Arezki Boudaoud
 
capsules to yeast cells
The indentation of pressurized elastic shells: from polymeric
 
 

References
ref-list-1
http://rsif.royalsocietypublishing.org/content/early/2011/08/02/rsif.2011.0352.full.html#

 This article cites 28 articles, 8 of which can be accessed free

P<P Published online 10 August 2011 in advance of the print journal.

Subject collections
 (456 articles)biophysics   �

 
Articles on similar topics can be found in the following collections

Email alerting service  hereright-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up in the box at the top

publication. 
Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial 
online articles are citable and establish publication priority; they are indexed by PubMed from initial publication.
the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance 
Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in

 http://rsif.royalsocietypublishing.org/subscriptions go to: J. R. Soc. InterfaceTo subscribe to 

This journal is © 2011 The Royal Society

 on August 10, 2011rsif.royalsocietypublishing.orgDownloaded from 

http://rsif.royalsocietypublishing.org/content/early/2011/08/02/rsif.2011.0352.full.html#ref-list-1
http://rsif.royalsocietypublishing.org/cgi/collection/biophysics
http://rsif.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royinterface;rsif.2011.0352v1&return_type=article&return_url=http://rsif.royalsocietypublishing.org/content/early/2011/08/02/rsif.2011.0352.full.pdf
http://rsif.royalsocietypublishing.org/subscriptions
http://rsif.royalsocietypublishing.org/


J. R. Soc. Interface

 on August 10, 2011rsif.royalsocietypublishing.orgDownloaded from 
*Authors for
boudaoud@en

doi:10.1098/rsif.2011.0352
Published online

Received 4 Ju
Accepted 19 J
The indentation of pressurized elastic
shells: from polymeric capsules to

yeast cells
Dominic Vella1,2,*, Amin Ajdari3, Ashkan Vaziri3

and Arezki Boudaoud4,*
1Department of Applied Mathematics and Theoretical Physics, University of

Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
2OCCAM, Mathematical Institute, University of Oxford, 24-29 Saint Giles’,

Oxford OX1 3LB, UK
3Department of Mechanical and Industrial Engineering, Northeastern University,

Boston, MA 02115, USA
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Pressurized elastic capsules arise at scales ranging from the 10 m diameter pressure vessels
used to store propane at oil refineries to the microscopic polymeric capsules that may be
used in drug delivery. Nature also makes extensive use of pressurized elastic capsules: plant
cells, bacteria and fungi have stiff walls, which are subject to an internal turgor pressure.
Here, we present theoretical, numerical and experimental investigations of the indentation
of a linearly elastic shell subject to a constant internal pressure. We show that, unlike unpres-
surized shells, the relationship between force and displacement demonstrates two linear
regimes. We determine analytical expressions for the effective stiffness in each of these
regimes in terms of the material properties of the shell and the pressure difference. As a con-
sequence, a single indentation experiment over a range of displacements may be used as a
simple assay to determine both the internal pressure and elastic properties of capsules. Our
results are relevant for determining the internal pressure in bacterial, fungal or plant cells.
As an illustration of this, we apply our results to recent measurements of the stiffness of
baker’s yeast and infer from these experiments that the internal osmotic pressure of yeast
cells may be regulated in response to changes in the osmotic pressure of the external medium.

Keywords: finite-element method; buckling; turgor regulation; cell wall
1. INTRODUCTION

Just as one might ‘poke’ an object to have a qualitative
sense of its material properties, materials scientists
often use an indentation test to make quantitative
measurements of an object’s elasticity [1–3]. Inden-
tation is a useful technique because it is repeatable
and non-destructive. For small scale applications in
biology, it is common to use an atomic force microscope
(AFM) in an indentation test to obtain high levels of
accuracy that would not otherwise be possible [4].
While several studies have focused on determining the
mechanical properties of both animal and plant cells
using variants of the indentation test [5,6], a question
of particular interest for plant, fungal and bacterial
cells is the turgor pressure within the cell. Indeed, differ-
ences in turgor pressure could be important for the
regulation of growth [7]. It has been suggested pre-
viously [8–11] that indentation using an AFM would
allow the turgor pressure of bacteria to be measured.
correspondence (dominic.vella@maths.ox.ac.uk; arezki.
s-lyon.fr).
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However, this previous work relied on an ad hoc
approach to the equations of elasticity rather than
using classical shell theory.

From a fundamental point of view, the indentation of
unpressurized elastic shells has received a great deal of
theoretical attention [12–15]. Much of the early work
focused on axisymmetric geometries but more recently
the simple problem of indentation has been used as a
starting point in understanding some of the more com-
plicated geometries that arise when an object with an
intrinsic curvature is subject to different external loads
[16,17]. By contrast, very little work has concerned the
indentation of a pressurized elastic shell, despite its tech-
nological importance in applications such as pressure
vessels [18] or capsules designed for drug delivery
[19,20]. However, numerical simulations have been car-
ried out for the case of a thick, fluid-filled shell with a
constant volume [21] and for a thin shell (or membrane)
subject to a constant internal pressure [20].

Here, we carry out a comprehensive investigation of
the indentation of spherical pressurized shells, combin-
ing an analytical study of the equations of shells with
This journal is q 2011 The Royal Society
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finite-element simulations and macroscopic experiments.
After the formulation of the problem of interest, we suc-
cessively focus on the regimes of small and large
indentations. We show that in each of these regimes the
shell has a characteristic stiffness and determine analy-
tical expressions for these stiffnesses in terms of the
material properties of the system. Finally, we apply
these results to previous microscopic experiments on the
indentation of polymeric capsules [20] and of baker’s
yeast [22]. In particular, our approach allows us to inves-
tigate the regulation of the osmotic pressure of yeast cells.
F

w
0

(c)

1 cm

Figure 1. The indentation of an inflated spherical shell con-
sidered here. (a) Idealized set-up and notation for the
problem: a spherical shell of thickness h and undeformed
radius R is subject to an internal pressure, p, while also
being loaded by a vertical point force F at a pole. This
causes a vertical deflection w(r) and, in particular, a displace-
ment w(0) ¼ 2w0 at the point of application of the force.
(b) Three-dimensional cross section of a deformed shell with
w0 ¼ 13 cm from numerical simulations with E ¼ 70 GPa,
v ¼ 0.3, R ¼ 1 m, h ¼ 2 mm and p ¼ 104 Pa. (c) Image show-
ing the experimental set-up in which a Pezzi ball
(Ledragomma) is inflated and loaded by an indentor.
2. FIRST OBSERVATIONS AND
FORMULATION

Our model system is shown schematically in figure 1a.
We consider an elastic shell of natural radius R, thickness
h, Young’s modulus E, Poisson ratio v that is subject to
an internal pressure (or pressure difference) p. The shell
is then deformed by the action of a point-like force, F.
Numerical simulations were performed using the com-
mercial finite-element package ABAQUS (SIMULIA,
Providence, RI, USA), a commercial finite-element pack-
age, with material properties R ¼ 1 m, E ¼ 70 GPa and
v ¼ 0.3. (Three-node thin quadratic axisymmetric shell
elements were used in all calculations and a mesh sensi-
tivity study was carried out to ensure that the results
are minimally sensitive to the element size.) To simulate
the response of a pressurized shell, a uniform internal
pressure was first applied to the shell. A point load was
then applied, while the internal pressure was kept con-
stant, and the relationship between applied force F and
maximum displacement w0 was determined for a range
of internal pressures and shell thicknesses. An image of
the deformed shell from simulations is shown in figure 1b.

Two typical force–displacement curves are shown in
figure 2a. The first curve shows the force–displacement
curve in the absence of an internal pressure. In this case,
we recover the two classical results for an unpressurized
shell: for w0 � h, F � w0, as shown by Reissner [13],
while for w0 � h, F � w1=2

0 as shown by Pogorelov
[14]. However, with an internal pressure the results in
figure 2a show that there are two separate linear
regimes. Further analysis reveals that the prefactor of
this linear relationship in the first regime, k1, differs
from that in the unpressurized case. In this article, we
focus on understanding the presence of these linear
regimes and determining the two linear stiffnesses, k1

and k2, in terms of the material properties of the system.
In order to test the experimental applicability of

our approach, we also performed a series of indenta-
tion tests using an inflated rubber ball (Pezzi ball,
Ledragomma) of radius R ¼18.5 cm, shell thickness
h ¼ 1 mm. Young’s modulus was measured to be E ¼
2.3 MPa (by determining the linear relationship
between internal pressure and shell circumference)
and we assume that the Poisson ratio v ¼ 0.5, as is typi-
cal of rubbers. The ball was inflated to a known pressure
and then loaded using a hemispherical cap indentor
(figure 1c) at a constant speed. (The radius of curvature
of the indentor � 3 mm, which is significantly smaller
than the horizontal length scale for the deforma-
tion of the shell �3 cm, making this a satisfactory
J. R. Soc. Interface
approximation to the point force assumed theoretically.
Experiments were conducted at room temperature and
the ball was supported by a wooden shelf with a
cut-out hole to ensure alignment of the pole with the
indentor.) The force required to impose this displace-
ment was measured continuously using a force gauge
(Andilog centor). Force–displacement curves for a
range of internal pressures demonstrate that for small
displacements the measured force is approximately
linear in displacement with a prefactor that depends
on the internal pressure (figure 2b).

For the theoretical formulation of the problem, we
start from the equations of axisymmetric plate theory
modified to incorporate the finite radius of curvature
of the shell. These equations are well known [23] and,
in the polar geometry of interest here, take the form

Br4w þ 1
R

1
r

d
dr
ðrcÞ � 1

r
d
dr

c
dw
dr

� �

¼ p� F
2p

dðrÞ
r

; ð2:1Þ
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Figure 2. Force-displacement curves in indentation tests. (a) In the absence of a pressure difference, p ¼ 0 (red curve) the numeri-
cal results recover the asymptotic results of Reissner [13] (solid line) and Pogorelov [14] (dashed line). However, with p ¼ 105 Pa
(blue curve), a new linear regime is observed at large displacements. Here, E ¼ 70 GPa, v ¼ 0.3, R ¼ 1 m, h ¼2 mm. (b) Exper-
imental results obtained with a Pezzi ball with internal pressure p ¼ 1.2 kPa (red) and p ¼ 5.4 kPa (blue). Results are shown for
loading at a speed of 200 mm s-1 (squares) and unloading at 1000mm s21 (crosses). In each case, two runs are shown with every
20th point plotted. The lack of a significant discrepancy between repeated experiments demonstrates the reproducibility of our
results as well as the unimportance of frictional and rate effects. The two solid lines represent the linear force laws F ¼ k1 w0 with
the appropriate value of k1 predicted by theory (see §3).
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and

1
Eh

1
r

d
dr

r
d
dr

1
r

d
dr
ðrcÞ

� �� �

¼ 1
R
r2w � 1

2r
d
dr

dw
dr

� �2

; ð2:2Þ

where w(r) is the vertical displacement of the membrane
(from the spherical state) and c is the derivative of the
Airy stress function, so that suu ¼c

0 and srr ¼ c/r
where ()0 denotes differentiation with respect to r.
We use a Dirac d-function to represent the point forcing
at the origin and have chosen the sign convention so
that positive F acts in the opposite direction to the
pressure, p. We thus expect positive forces to produce
negative displacements.
3. SMALL INDENTATION

For the case of no applied point force, F ¼ 0, we antici-
pate that w ¼ w1, a constant. Substituting this ansatz
into equation (2.1), we find that

c ¼ pRr
2

: ð3:1Þ

The shell is therefore in a uniform state of stress in which
suu ¼ srr ¼ s1 ¼ pR/2. To consider small deformations
from this state, it is natural to perturb the base
state given by equation (3.1), letting w! w þ w1 and
c! c þ s1r. At leading order, we eliminate c from
equation (2.1) by using equation (2.2) to find that the
displacement of the shell is governed by

Br4w � s1r2w þ Eh
R2 w ¼ � F

2p
dðrÞ
r

: ð3:2Þ
J. R. Soc. Interface
We note that a balance between the term representing
bending and the linear restoring force gives rise to a natu-
ral bending length scale,

‘b ¼
BR2

Eh

� �1=4

� ðhRÞ1=2: ð3:3Þ

The appropriate solution of equation (3.2) subject to
w(0) ¼ 2w0 is

wðrÞ ¼ � 2w0

logðl�=lþÞ
K0

l
1=2
þ r
‘b

 !
�K0

l1=2
� r
‘b

� �" #
;

ð3:4Þ

where

l+ ¼ t+ ðt2 � 1Þ1=2

and t ¼ 1
2
s1

R2

EhB

� �1=2

¼ 1
4

pR2ðEhBÞ�1=2

9>=
>;; ð3:5Þ

and K0(x) is the modified Bessel function of zeroth
order [24]. We note that the coefficients of the K0

terms in equation (3.4) are chosen such that there is
no logarithmic singularity close to the point of indenta-
tion. The parameter t represents a dimensionless
pressure. It is a simple matter to calculate the force
by integrating equation (3.2) once to give F ¼ k1w0 where

k1 ¼
4pB
‘2b

ðt2 � 1Þ1=2

arctanhð1� t�2Þ1=2
: ð3:6Þ

In figure 3, we show the value of k1 determined from
ABAQUS simulations for a range of values of the dimen-
sionless pressure t and compare it to the prediction in
equation (3.6). In addition, the experimental effective
stiffness, k1, was determined by a linear fit on all data

http://rsif.royalsocietypublishing.org/
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Figure 3. Small indentation. The dependence of the dimen-
sionless shell stiffness k1 ‘b

2/B on the dimensionless pressure
t, which is defined in equation (3.5). The solid curve shows
the theoretical prediction (3.6), which is approximated by
the result of Reissner [13], k1�8B/‘b

2, for t� 1 (dashed
line) and by equation (3.7) for t� 1 (dotted curve). Open
points show the results from simulations with shell thicknesses
h ¼ 2 mm (blue squares) and h ¼ 5 mm (red circles). All other
material properties are as in figure 2a. Solid points (green
triangles) show experimental results obtained using a Pezzi
ball with error bars given by repeated trials at different
loading speeds.
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with w0 , h/2. (We shall see that equation (3.6) is only
valid in the limit w0 � h.) The dependence of the
measured values of k1 on t is plotted with the theoreti-
cal curve and numerical points in figure 3 and show that
the measured stiffness is in good agreement with that
expected from the theoretical analysis. The range of
pressures used in our experiments are such that the
Pezzi ball is a strongly pressurized shell (i.e. t� 1),
in which limit we find

k1 �
4pB
‘2b

t

log 2t
¼ ppR

log 2t
: ð3:7Þ

We note that for t� 1 we recover the unpressurized
result of Reissner [13], which in our notation reads
k1 ¼ 8B=‘2b. These asymptotic results are shown in
figure 3 for completeness. We also note that the result,
equation (3.7), is similar to that obtained from a simpli-
fied analysis of the indentation of a cylindrical cell [8],
albeit with a different prefactor. This similarity is to be
expected on dimensional grounds. Finally, the force law
f ¼ k1w0 is expected to hold provided the effects of
geometrical nonlinearities are relatively small, i.e. that
the first term on the right-hand side of equation (2.2)
dominates the second term. Quantitatively, this requires
that w0 � h.
4. LARGE INDENTATION

We now consider an indentation w0 � h. In this regime,
we must carefully account for geometrical nonlinearities.
Numerical simulations suggest that the force–
displacement curve temporarily loses its linearity but
J. R. Soc. Interface
ultimately regains it, albeit with a different stiffness,
i.e. F � k2w0. To understand this behaviour, it is impor-
tant to consider the fully nonlinear problem described by
equations (2.1) and (2.2). However, to simplify the analy-
sis we neglect the effect of bending stiffness, the
biharmonic term in equation (2.1). The coefficient of
the bending term in equation (2.1) is a fraction t22 of
the other terms and hence this approximation is valid
provided that t� 1. With this simplification, we find
that the shell equations may be integrated once and
simplified to give

F
2p
¼ pr2

2
þ c

dw
dr
� r

R

� �
; ð4:1Þ

and

r
d
dr

1
r

d
dr
ðrcÞ

� �
¼ Eh

r
R

dw
dr
� 1

2
dw
dr

� �2
" #

; ð4:2Þ

where we have used the behaviour c � pRr/2 as r!1

to eliminate the constant that arises upon integrating
equation (2.2). Having neglected the influence of the
bending stiffness on this problem, a new length scale

‘p ¼
pR
Eh

� �1=2

R ð4:3Þ

emerges from a balance between in-plane stretching
and the geometric stretching caused by the internal
pressure.

We note that it is possible to transform equations
(4.1) and (4.2) into a single equation for the stress func-
tion c by eliminating dw/dr from equation (4.2) using
equation (4.1), as has been done previously for problems
in planar membrane theory [25,26]. However, here we
leave the equations in the above form and solve them
numerically, using the MATLAB routine bvp4c, subject
to the boundary conditions

wð0Þ ¼ �w0; lim
r!0
ðrc0 � ncÞ ¼ 0

and wð1Þ ¼ 0; c0ð1Þ ¼ pR
2

9=
;: ð4:4Þ

The second boundary condition corresponds to the con-
dition of zero horizontal displacement at the origin [27].
The force F is determined as part of the solution to this
problem. Its dependence on the imposed displacement
w0 is shown as the solid black curve in figure 4a and is
compared with the simulation results obtained from
ABAQUS, shown by the coloured curves, as well as exper-
imental results, shown by points. This comparison
shows good agreement between the theoretical result,
simulations and experiment with the discrepancies
accounted for by our neglect of the bending stiffness,
B, in this membrane model.

Figure 4a suggests that in the limit of very large
displacements we find F / pRw0. To understand this be-
haviour for large forces, we introduce the dimensionless
force fFg ¼ F=2pp‘2p. We also rewrite equation (4.1) by
introducing dimensionless variables F ¼ rc=fFgp‘2p,

http://rsif.royalsocietypublishing.org/
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Figure 4. Large indentation. (a) Force F required to give an imposed displacement w 0. The results of simulations with R ¼ 1 m,
E ¼ 70 GPa and v ¼ 0.3 are shown as coloured curves for different internal pressures p (blue, p ¼ 10 MPa; green, p ¼ 1 MPa; red,
p ¼ 0.1 MPa) and shell thicknesses h (dashed curves represent h ¼ 2 mm, solid curves h ¼ 5 mm). The solid black curve gives the
membrane prediction obtained by solving equations (4.1) and (4.2), while the dotted black line gives the asymptotic result (4.8).
The experimental results of figure 2b are also shown for p ¼ 1.2 KPa (squares) and p ¼ 5.4 KPa (triangles). (b) Rescaling of the
deformation profile suggested by equation (4.7). The numerical results of the membrane model for w0 R/‘p

2 ¼ 1 (red), 102 (green)
and 104 (blue) demonstrate that for w0 R/‘p

2� 1 we recover the inverted spherical cap profile (4.7), shown as the solid
black curve.
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h ¼ r2=fFg‘2p and v ¼ wR=F‘2p to find that

dv
dh
¼ 1

2
þ 1� h=2

2F
; ð4:5Þ

which may then be used to rewrite equation (4.2) as

1
F

d2F

dh2 ¼
1
8

1� ð1� h=2Þ2

F2

" #
: ð4:6Þ

In the limit F � 1 equation (4.6) takes the usual
form of a boundary layer equation with a small par-
ameter, 1=F , multiplying the highest order derivative.
Far away from the point of indentation, we expect
that the left-hand side of equation (4.6) can be approxi-
mated by 0, giving F � j1–h/2j. Substituting this into
equation (4.5), we find then that v ¼ 0 for h . 2 and
v ¼ h–2 for h , 2. Upon rewriting v ¼ h–2 in dimen-
sional terms and requiring that w(0) ¼ –w0 we find that
in the limit w0 � ‘2p=R the deformation of the shell is
described by

w ¼ �w0 þ
r2

R
; r � ðw0RÞ1=2;

0; r . ðw0RÞ1=2;

8<
: ð4:7Þ

which is simply the inverted spherical cap found by
Pogorelov [14] for the case of unpressurized shells—
also commonly known as ‘mirror buckling’. This shape
is shown in rescaled form in figure 4b as the solid
black curve demonstrating that the numerical solution
of the membrane models (4.1) and (4.2) are well
approximated by this result for w0R=‘2p � 1. We note
that in equation (4.7) the shell is only deformed for
r , (w0R)1/2—the flat regions for r . (w0R)1/2 in
figure 4b indicate that the shell is not deformed in
this region.
J. R. Soc. Interface
The above analysis also demonstrates that F �
ppRw0. Alternatively, we may understand the linear
force law that is observed in this regime by noting
that the decrease in volume of the shell caused by this
deformation is DV � pRw2

0=2 and hence that the
work done by the loading force in compressing the
gas within the shell, pDV � ppRw2

0=2. Differentiating
this expression with respect to w0, we find that the
applied force

F � ppRw0: ð4:8Þ

The asymptotic result (4.8) is confirmed by the numeri-
cal solution of the membrane models (4.1) and (4.2), as
shown by the dotted black line in figure 4a.
5. DISCUSSION AND APPLICATIONS

We have studied the indentation of a pressurized elastic
shell and shown that the force–displacement curve
exhibits two linear regimes (at small and large deflec-
tions compared with the thickness h). For strongly
pressurized shells, we found that F � k1w0 for w0 � h
and F � k2w0 for w0 � h where

k1 �
ppR
log 2t

; k2 � ppR

and t ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� n2Þ

p pR2

Eh2 � 1

9>>=
>>;: ð5:1Þ

We validated these analytical results using finite-
element simulations and macroscopic experiments.
The analytical understanding of these two regimes
gained here may be used to determine both p and Eh2

using data from a single indentation experiment in
which both k1 and k2 are measured. This is in contrast
to previous techniques [20], which required a single stiff-
ness to be measured in two different experimental

http://rsif.royalsocietypublishing.org/
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value (crosses) and the 68.3% confidence interval, corresponding to 1 s.d., for log k1 (error bars) [22]. Dashed lines show the mini-
mum and maximum values of k1 taken to estimate Young’s modulus E, see text. (b) Dependence of the internal pressure of these
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nal osmotic pressures, thereby inferring the internal pressure.
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geometries in combination with numerical simulation.
Our technique is particularly useful when it is the
internal swelling pressure (or osmotic pressure) that is
to be measured, since the result in equation (5.1)
shows that the stiffness k2 depends only on this pressure
and the radius of the capsule. We note that the
experiments of Gordon et al. [20] appear to be precisely
in this regime since, using their estimates, the para-
meter w0R=‘2p � 100� 1. Using the asymptotic result
(5.1), we find that their experimental data suggest
internal pressures ranging from 15 to 120 Pa (assuming
a capsule radius of 100 mm). This is in reasonable agree-
ment with the values given by them (100–500 Pa)
but is less sensitive to errors in fitting since it is not
necessary to estimate the elastic properties of the shell
as well.

Our results may also be applied to understand recent
experiments [22] on yeast cells, Saccharomyces cerevi-
siae, in which indentation with an AFM tip was used
to determine changes in the cell’s stiffness as the
osmotic pressure of the external medium was varied.
These experiments were performed for indentations
of the order of the wall thickness (maximum
indentation �50 nm compared with a typical wall
thickness [6] h � 70 nm) and hence the measured stiff-
ness corresponds to k1 in our notation. The cell wall of
yeast is known to be permeable allowing material to
flow out of the cell and equilibrate non-osmotic pressure
differences [28]. Although this flow could in principle be
modelled [28], the relatively small size of indentations,
together with the experimental observation that results
are unchanged upon varying the indentation speed,
suggest that the assumption made in our analysis of
constant pressure difference during indentation is satis-
factory. Other complications include the layered
structure of the yeast cell wall, with not all layers con-
tributing equally to its mechanical strength [29], and
the potentially complicated constitutive law relating
J. R. Soc. Interface
stresses and strains. Nevertheless, the application of
the theoretical understanding developed from the ideal-
ized model presented in this paper gives us a starting
point for extracting characteristic moduli and values
for the internal osmotic pressure.

The principle result of the indentation experiments
of Arfsten et al. [22] is that the value of k1 depends on
the osmotic pressure of the external medium
(figure 5a). Furthermore, they found that above a criti-
cal external osmotic pressure, Pext ¼ 2.1 MPa, this
stiffness becomes significantly smaller. From this obser-
vation, it was concluded that the cell is effectively
deflated when Pext ¼ 2.1 MPa and hence that the
internal osmotic pressure of the cell is Pint ¼ 2.1 MPa.
Strictly speaking, this value is the maximal osmotic
pressure that the cell can generate. Our analysis
suggests that, as the pressure difference decreases, a
residual stiffness should remain and be explained by
the analysis of Reissner [13]. Using this result and typi-
cal estimates for the thickness of the cell wall h � 70 nm
and cell radius R � 2.75 mm from the literature [6], we
take the measured upper and lower bounds for k1 (see
dashed lines in figure 5a) and estimate that 12 MPa �
E � 46 MPa. This value is reasonably consistent with
values determined previously [5,30] and also gives
‘p � 2mm and ‘b � 200 mm, which are both signifi-
cantly larger than the AFM tip used (�15 nm)
justifying our approximation of a point force. With
this value of E, the theory developed here, more specifi-
cally equation (3.6), can be used to estimate the
internal pressure required to obtain the observed
values of k1. The results of this calculation are shown
in figure 5b and indicate that as the external pressure
is increased so the internal pressure is actively increased
to maintain a certain degree of turgor, i.e. an internal
osmotic pressure that is higher than that of the external
medium. Beyond Pint ¼ 0.6 MPa the cell becomes
unable to maintain turgor.

http://rsif.royalsocietypublishing.org/
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We find a typical value of turgor of 0.1–0.2 MPa,
which is consistent with experiments using different
methodologies [30,31], which found turgor pressures in
the range 0–1 MPa. Finally, we note that for these
experiments 0 � t � 10 and so it is necessary to make
use of the full analytical expression (3.6). This is par-
ticularly important for explaining the presence of a
residual stiffness when the yeast cell is unable to main-
tain turgor (for external pressures Pext � 0.6 MPa).
As Arfsten et al. [22] surmised, the presence of this stiff-
ness demonstrates that the role of bending effects
cannot be neglected as turgor decreases—an assump-
tion that is often made in simplified models of cell
indentation [8,9].

We anticipate that our analytical results, and particu-
larly the asymptotic results (5.1) for strongly pressurized
shells, could provide a standard tool for the mechanical
characterization of pressurized shells in a range of biolo-
gical applications, such as the measurement of the
properties of capsules and walled cells. Other features of
the indentation of pressurized shells may also aid this
aim. For example, under large deformations pressurized
shells are subject to an azimuthal buckling instability
that leads to the formation of a large number of wrinkles
with a well-defined length. The number of wrinkles as
well as their length could thus be used for the mechanical
characterization of shells [32,33].A full studyof thiswrink-
ling is currently underway.
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Kwade, A. 2010 Atomic force microscopy studies on the
nanomechanical properties of Saccharomyces cerevisiae.
Colloids Surf. B Biointerfaces 79, 284–290. (doi:10.
1016/j.colsurfb.2010.04.011)

23 Shipman, P. D. 2004 Plant patterns. PhD thesis, Univer-
sity of Arizona, AZ, USA.

24 Abramowitz, M. & Stegun, I. A. 1964 Handbook of
mathematical functions with formulas, graphs, and
mathematical tables. New York, NY: Dover.

25 Chopin, J., Vella, D. & Boudaoud, A. 2008 The liquid
blister test. Proc. R. Soc. A 464, 2887–2906. (doi:10.
1098/rspa.2008.0095)

26 Vella, D., Adda-Bedia, M. & Cerda, E. 2010 Capillary
wrinkling of elastic membranes. Soft Matter 6, 5778–
5782. (doi:10.1039/c0sm00432d)

27 Timoshenko, S. P. & Woinowsky-Krieger, S. 1959 Theory
of plates and shells. Singapore: McGraw-Hill.

http://dx.doi.org/10.1016/0020-7225(65)90019-4
http://dx.doi.org/10.1016/j.mser.2004.05.001
http://dx.doi.org/10.1063/1.3370354
http://dx.doi.org/10.1126/science.1097640
http://dx.doi.org/10.1073/pnas.97.18.9871
http://dx.doi.org/10.1016/S0922-338X(98)80002-0
http://dx.doi.org/10.1016/S0922-338X(98)80002-0
http://dx.doi.org/10.1073/pnas.0812493106
http://dx.doi.org/10.1103/PhysRevE.62.1034
http://dx.doi.org/10.1016/S0927-7765(01)00249-1
http://dx.doi.org/10.1016/S0927-7765(02)00073-5
http://dx.doi.org/10.1016/S0927-7765(02)00073-5
http://dx.doi.org/10.1016/0020-7403(88)90057-4
http://dx.doi.org/10.1073/pnas.0707364105
http://dx.doi.org/10.1016/j.tws.2008.11.009
http://dx.doi.org/10.1016/j.tws.2008.11.009
http://dx.doi.org/10.1073/pnas.182233999
http://dx.doi.org/10.1021/ja0474749
http://dx.doi.org/10.1115/1.3161953
http://dx.doi.org/10.1016/j.colsurfb.2010.04.011
http://dx.doi.org/10.1016/j.colsurfb.2010.04.011
http://dx.doi.org/10.1098/rspa.2008.0095
http://dx.doi.org/10.1098/rspa.2008.0095
http://dx.doi.org/10.1039/c0sm00432d
http://rsif.royalsocietypublishing.org/


8 Indenting pressurized elastic shells D. Vella et al.

 on August 10, 2011rsif.royalsocietypublishing.orgDownloaded from 
28 Smith, A. E., Moxham, K. E. & Middelberg, A. P. J. 1998
On uniquely determining cell–wall material properties
with the compression experiment. Chem. Eng. Sci. 53,
3913–3922. (doi:10.1016/S0009-2509(98)00198-5)

29 Klis, F. M., Boorsma, A. & de Groot, P. W. J. 2006 Cell
wall construction in Saccharomyces cerevisiae. Yeast 23,
185–202. (doi:10.1002/yea.1349)

30 Schaber, J. et al. 2010 Biophysical properties of Saccharo-
myces cerevisiae and their relationship with HOG
pathway activation. Eur. Biophys. J. 39, 1547–1556.
(doi:10.1007/s00249-010-0612-0)
J. R. Soc. Interface
31 Minc, N., Boudaoud, A. & Chang, F. 2009 Mechanical
forces of fission yeast growth. Curr. Biol. 19, 1096–1101.
(doi:10.1016/j.cub.2009.05.031)

32 Huang, J., Juszkiewicz, M., de Jeu, W. H., Cerda, E.,
Emrick, T., Menon, N. & Russell, T. P. 2007 Capillary
wrinkling of floating thin polymer films. Science 317,
650–653. (doi:10.1126/science.1144616)

33 Bernal, R., Tassuis, Ch., Melo, F. & Géminard, J.-Ch.
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